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ABSTRACT

An algorithm for calculating acoustic intensities from a time-harmonic pressure field in an

axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN

triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave

equation and elasticity equations. Acoustic intensities are then calculated from pressures and

pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors

indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A

prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged

in a fuid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity

method and the usefuh2ess of energy flow paths in the understanding of the response of

fluid-structure interaction problems. The structural-acoustic analogy used is summarized for

completeness. This study uncovered a NASTRAN limitation involving numerical precision issues

in the CONEAX stiffness calculation causing large errors in the system matrices for nearly

cylindrical cones.

!NTRODUCTION

An acoustic intensity formulation for general, axisymmetric, fluid domains modclcd with TRIAAX

elements is presented. Numerical acoustic field solutions to fluid-structure interaction problems currently yield
acoustic pressure fields, which may be used to locate high acoustic pressure concentrations. The motivation for
calculating and displaying acoustic intensities is to help visualize the energy flow paths which cause high pressure

regions. The energy flow fields can then help to identify dominant power paths which flow between structure
and fluid, and therefore the important radiating parts of a structure.

"l'he general problem of computing the interaction of an elastic structure with an acoustic fluid can be

solved by combining a finite element model of the structure with a fluid loading computed using boundaD'
element [1-11], finite element [12-23], combined finite element/analytical [24-26], "F-matrix [27-29], and

approximate fluid loading [30-32] techniques. In the fluid finite element approach, the exterior fluid domain is
modeled with finite elements truncated at a finite distance from the structure and terminated with an

approximate radiation boundary condition to absorb outgoing waves. The principal computational trade-off
between this approach and the boundary element approach is that the finite element approach yields large,
banded matrices, whereas the boundary element approach yields smaller, densely-populated matrices. This

trade-off sometimes favors the finite element approach for long, slender structures like ships which are
"naturally banded." In addition, only the fluid finite element approach has directly available an explicit fluid
mesh which can be used for graphical display of the wave motion through the fluid. Since a significant part of our

interest involves the display of wave propagation through both structure and fluid, we therefore formulate this

problem using the fluid finite element approach. The principal drawbacks to fluid finite element modeling are
the need for an approximate radiation boundary condition at the outer fluid boundary, the requirements on mesh
size and extent (sometimes leading to frequency-dependent fluid meshes [201), and the difficulty of generating
the fluid mesh.
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Direct frequency response NASTRAN [33] solutions for axisymmetric regions are described in general,

and for domains that are defined using both structural and fluid subregions. Structural regions are modeled using
standard structural finite elements (CONEAX, TRIAAX, TRAPAX); fluid regions are modeled with triangular
elements of revolution (TRIAAX) using an analogy relating the Helmholtz equation to the elasticity equations

used for the structural elements. The analogy is described in detail by Everstine [34] and is summarized for
completeness here. The modeling of fluid-structure interaction between fluid and structure domains is also
defined, as well as the application of acoustic boundary conditions to fluid models.

The acoustic intensity formulation includes the definition of the intensity quantity, the algorithm used

to calculate fluid particle velocities using the pressure distribution in a general triangularized domain, and the
calculation of the acoustic intensity vector quantity from pressures and velocities. The formulation has been

implemented in the program AclNT (Acoustic INTensity), which functions as a post-processor to NASTRAN.
An example, a submerged prolate-spheroidal shell with two sets of boundary conditions, is analyzed for a ring

load. The resulting acoustic intensity fields are displayed for a given excitation frequency to illustrate the energy
flow paths which result. The acoustic intensity vector plots show the utility of the method in identifying dominant
power paths in fluid-structure interaction problems.

STRUCTURAL-ACOUSTIC ANALOGY

From an engineering point of view, it is convenient to be able to make use of existing general purpose

finite element codes for analyzing structural-acoustic problems. Finite element codes are widely available,
versatile, reliable, well supported, and an abundance of pre- and postprocessors may be used with them. Thus we
summarize in this section an analogy [34] between the equations of elasticity and the wave equation of acoustics.

This analogy allows the coupled structural acoustic problem to be solved with standard finite element codes like
NASTRAN.

The pressure p in an acoustic field satisfies the wave equation

V_p _ r_
c2, (1)

where W is the Laplacian operator, p is the dynamic fluid pressure, c is the wave speed, and dots denote partial

differentiation with respect to time.

On the other hand, the x-component of the Navier equations of elasticity, which are the equations

solved by structural analysis computer programs, is

2+2G 2+G if 0 .
O u,= + u yy + u.= + _ (vw + w=) + G " = -_u, (2)

where u, v, and w are the Cartesian components of displacement, X is a Lain6 elastic constant, G is the shear

modulus, fx is the x-component of body force per unit volume (e.g., gravity), 0 is the mass density, and corn mas

denote partial differentiation.

A comparison of Eqs. 1 and 2 indicates that elastic finite elements can be used to model scalar pressure

fields if we let u, the x-component of displacement, represent p, set v = w -- 0 everywhere, fx = 0, and X = -G.

For three-dimensional analysis, the engineering constants consistent with this last requirement are

_ G_ (3)
Ee = 102°G_, O_ c 2 ,

where the element shear modulus Ge can be selected arbitrarily. The subscript "e" has been added to these

constants to emphasize that they are merely numbers assigned to the elements.

A variety of boundary conditions may also be imposed. At a pressure-release boundary, p = 0 is

enforced explicitly like other displacement boundary conditions. For gradient conditions, the pressure gradient

Op/On is enforced at a boundary point by applying a "force" to the unconstrained DOF at that point equal to

GeAOp/dn, where A is the area assigned to the point and n is the outward normal from the fluid region. For

example, the plane wave absorbing boundary condition

0p _ p (4)
On c
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is enforced by applying to each point on the outer fluid boundary a "force" given by - (G_A/c)p. Since this

"force" is proportional to the first time derivative of the fundamental solution variable p, this boundary t:ondition

is imposed in the analogy by attaching to the fluid DOFa "dashpot" of constant G_A/c. The Neumann condition

Op/c)n = 0 is the natural boundary condition under this analogy. The next higher order local radiation

boundary condition, the curved wave absorbing boundary condition [23,36]

Op_p = p p (5)
0n C r '

where r is the radius of the boundary, is enforced under the analogy by attaching in parallel both a "dashpot" and a

"spring" between each boundary point and ground.

At a fluid-structure interface (an accelerating boundary), momentum and continuity considerations

require that

dp
Q/i., (6)

On

where n is the normal at the interface, Q is the mass density of the fluid, and ti, is the normal component of fluid

particle acceleration. Under the analogy, this condition is enforced by applying to the fluid DOF at a

fluid-structure interface a "force" given by - (G,QA)u,.

To summarize, the wave equation, Eq. 1, can be solved with elastic finite elements if the

three-dimensional region is modeled with 3-D solid finite elements having material properties given by Eq. 3,
and only one of the three Cartesian components of displacement is retained to represent the scalar variable p. In
Cartesian coordinates, any of the three components can be used. The solution of axisymmetric problems in

cylindrical coordinates follows the same approach except that the z-component of displacement is the only one
which can be used to represent p.

FINITE ELEMENT FORMULATION OF FLUID-STRUCTURE INTERACTION

There are two fundamental fluid-structure interaction problems of interest in structural acoustics:
acoustic radiation, in which a submerged elastic body is subjected to a mechanical excitation applied to the

structure, and scattering, in which the structure is subjected to an external incident pressure loading. For general
time-dependent problems, the excitation is an arbitrary function of time, whereas in the time-harmonic case _f
interest here, the excitation has a single circular frequency a).

Although our specific interest here is the time-harmonic case, we summarize the theory [22,35] for the

more general case, which includes an incident loading as well. The radiation problem will be covered as a special
case. For scattering, we assume, without loss of generality, that the incident wave propagates in the negative z
direction. The speed of such propagation is c, the speed of sound in the fluid.

Within the fluid region, the total pressure p satisfies the wave equation, Eq. 1. Since the incident
free-field pressure Pi is known, it is convenient to decompose the total pressure p into the sum of incident and

scattered pressures

p = p_ + p,, (7)

each of which satisfies the wave equation.

We now formulate the problem for finite element solution. Consider an arbitrary, submerged,
three-dimensional elastic structure subjected to either internal time-dependent loads or an external

time-dependent incident pressure. If the structure is modeled with finite elements, the resulting matrix equation
of motion for the structural degrees of freedom (DOF is

Mu + Bu + Ku = F- GAp, (8)

where M, B, and K are the structural mass, viscous damping, and stiffness matrices (dimension s x s), respectively,
u is the displacement vector for all structural DOF (wet and dry) in terms of the coordinate systems selected by
the user (s x r), F is the vector of applied mechanical forces applied to the structure (s x r), G is the rectangular

transformation matrix of direction cosines to transform'a vector of outward normal forces at the wet points to a
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vector of forces at all points in the coordinate systems selected by the user (s x f), A is the diagonal area matrix for
the wet surface (fx f), p is the vector of total fluid pressures (incident + scattered) applied at the wet grid points (f

x r), and dots denote differentiation with respect to time. The pressure p is assumed positive in compression. In
the above dimensions, s denotes the total number of independent structural DOF (wet and dry), f denotes the

number of fluid DOF (the number of wet points), and r denotes the number of load cases. If first order finite
elements are used for the surface discretization, surface areas, normals, and the transformation matrix G can be

obtained from the calculation of the load vector resulting from an outwardly directed static unit pressure load on
the structure's wet surface. The matrix product OA can then be interpreted as the matrix which converts a vector

of negative fluid pressures to structural loads in the global coordinate system. The last two equations can be
combined to yield

Mfi + BU + Ku + GAp_ = F- GAp,. (9)

A finite element model of the fluid region (with scattered pressure p, as the unknown) results in a

matrix equation of the form

QI5, + cp, + Hp, = F_), (10)

where p, is the vector of scattered fluid pressures at the grid points of the fluid region, Q and H are the fluid

"inertia" and "stiffness" matrices (analogous to M and K for structures), C is the "damping" matrix arising from

the radiation boundary condition (Eq. 4), and F _) is the "loading" applied to fluid DOF due to the fluid-structure

interface condition, Eq. 6. Using the analogy described in the preceding section, elastic finite elements can be
used to model both structural and fluid regions. Material constants assigned to the elastic elements used to

model the fluid .are specified according to Eq. 3. In three dimensions, elastic solid elements are used (e.g.,
isoparametric bricks (IHEXi) for general 3-D analysis or solids of revolution (TRIAAX, TRAPAX) for
axisymmetric analysis).

At the fluid-structure interface, Eqs. 6 and 7 can be combined to yield

0p_
e(u.,- uo), (11)

On

where n is the outward unit normal, and U,,_ and U,, are. respectively, the incident and total omward _ornlal

components of fluid particle acceleration at the interface. Thus, from the analogy, we impose the fluid-structure
interface condition by applying a "load" to each interface fluid point given by

F _) = - 0G_A(ti,_ - U,), (12)

where the first minus sign is introduced since, in the coupled problem, we choose n as the outward normal from
the structure into the fluid, making n an inward normal for the fluid region. The normal displacements u, are

related to the total displacements u by the same rectangular transformation matrix G used above:

u_ = Gru, (13)

where the superscript T denotes the matrix transpose. Eqs. 10, 12, and 13 can be combined to yield

QI5, + cp_ + Hp,- QG_(GA)Tfi = -oG_Afi_. (14)

Since the fluid-structure coupling terms in Eqs. 9 and 14 are nonsymmetric, we symmetrize the problem [21] by
using a new fluid unknown q such that

t

q = [p_dt, q = p_. (15)
3!

0

If Eq. 14 is integrated in time, and the fluid element "shear modulus" G, is chosen as

-1
G_ - , (16)

O

the overall matrix system describing the coupled problem can be written as
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c Jl.q! Av,,, 1'

where v., (= u.,) is the outward normal component of incident fluid particle velocity.

(17)

The new variable q is, except for a multiplicativc constant, the velocity potential q_, since

p - -e¢. (18)

Eq. 17 could also be recast in terms of ¢ rather than q as the fundamental fluid unknown, but no particular

advantage would result. In fact, the use of q rather than ¢ has the practical advantage that the fluid pressure can

be recovered directly from the finite element program as the time derivative (velocity) of the unknown q.

"lb summarize, both structural and fluid regions are modeled with finite elements. For the fluid region,

the material constants assigned to the finite elements are

- I0 z° - 1 - 1
Ec , G_ = --, v_ = unspecified, 0_ = -- (19)

0 0 0c2 '

where E_, Go, v_, and 0_ are the Young's modulus, shear modulus, Poisson's ratio, and mass density,

respectively, assigned to the fluid finite elements. The properties e and c above are the actual density and sound

speed for the fluid medium. The radiation boundary condition used is the plane wave approximation, Eq. 4, which

appears to be adequate if the outer fluid boundary is sufficiently far from the structure [20]. With this boundary
condition, matrix C in Eq. 17 arises from dashpots applied at the outer fluid boundary with damping constant

- A/(0c ) at each grid point to which the area A has been assigned. At the fluid-structure interface, matrix GA is

entered using the areas (or areal direction cosines) assigned to each wet degree of freedom. (Recall that GA can
be interpreted as the matrix which converts a vector of negative fluid pressures to structural loads in the global

coordinate system.)

For radiation problems, the right hand side of Eq. 17 can be simplified further since the incidenl

pressure p, is zero, and we obtain

B K 0

We note that the structural and fluid unknowns are not sequenced as perhaps implied by the partitioned

form of Eq. 20. The coupling matrix GA is quite sparse and has nonzeros only for matrix rows associated with the
structural DOF at the fluid-structure interface and columns associated with the coincident fluid points. Thus, the

grid points should be sequenced for minimum matrix bandwidth or profile as if the structural and fluid meshes
comprised a single large mesh. As a result, the structural and fluid grid points will, in general, be interspersed in

their numbering, and the system matrices will be sparse and banded.

ACOUSTIC INTENSITY CALCULATIONS

The procedure for solving for the acoustic intensity field in an axisymmetric fluid finite element model

using NASTRAN [33] and the acoustic intensity post-processor AclNT is:

• run NASTRAN on a dynamically loaded finite element model of structural elements
and fluid elements using direct frequency response analysis, and generate resultant

nodal pressures for the fluid region(s);

• run AclNT using the output from NASTRAN to calculate nodal fluid velocities and
acoustic intensities.

The nodal pressures, actually the cosine coefficients of nodal pressures, are computed by NASTRAN
in response to the AXISYMMETRIC = COSINE command in the case control part of the input data. Since only
cosine coefficients are requested, the 2, 4, and 6 DOF are removed by NASTRAN for harmonic zero. The 1
and 5 DOF must be constrained by the user, leaving the 3 DOF to represent the scalar fluid velocity potential.
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The velocity potential integrated over time is the fluid pressure. Therefore, in the analogy, nodal pressures are
obtained by the case control command VELOCITY = ALL (or SETID). The resultant fluid nodal pressures are
used as illustrated below to compute acoustic velocities and intensities.

Acoustic Intensity

Intensity is defined as the time averaged product of a pressure with the in-phase component of particle

velocity. For time-harmonic analysis, where complex numbers are used, this calculation may be visualized as

taking the dot product of the pressure and velocity phasors. Multiplying one complex number by the in-phase

part of another complex number is the same operation as multiplying the first number by the complex conjugate

of the other number and taking the real part of the result:

i" = _ [pv'l, (21)

where p is pressure, and v-" is the complex conjugate of velocity. (Often, a factor of 1/2 appears in intensity

equations. However there is no factor 1/2 in the equations if the assumption is made that pressures and velocities

are "effective" rms values rather than amplitudes. With this assumption, consistency is maintained, and there is

no mixing of effective and peak quantities in this formulation.)

Acoustic Velocities

The derivation of acoustic velocities for axisymmetric problems is performed for the cosine coefficients
of the Fourier summation about the axis of rotational symmetry (z), where the r, z, and rotation about 0 DOF
are active. Only the r and z variations of the scalar pressure field are used to calculate the acoustic velocity vector

field. The particle velocity in a fluid domain is defined as:

v = --Vp = [ + 1_) ,
too O oz

where Q is the fluid density, co is the circular frequency, i is the square root of- 1, Op and dp are the pressure
dr 0z

derivatives in the r and z directions, and _" and I_ arc unit vcctors in the r and z directions, respectively. A first

order finite difference approximation of the pressure derivatives at the nodes in an individual TRIAAX element
can be made as shown in Figure 1. The pressure differences between nodes are divided by the distances between
nodes to approximate the first derivative of pressure in the direction of the two nodes. The approximate pressure

t
3

1

Z

0p P2 - Pl
gJ2 Vp - =

os,_ 1_,21

fi_ • Vp - Op _. P3 - P,
as. I_,_1

where:

e,, = (s.,[ + s,,d:)ll_,,l

Figure 1. Pressure Gradient Approximation.

gradient equations are written for all nodes connected to the node for which the velocity vector is to be calculated.

In the case above, all elements connected to node 1 must be found, and equations are written for each node
connected to node 1. No duplicate equations are written when two elements share a common edge. An
overdetermined system of equations for the pressure derivatives in the r and z directions is the result, with one
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equation for each node connected to the primary node. The system of equations is

S_, sz,[ t_(3 _ = OSla_£p
• l_J os_

SNr SN_

Op

OSN.

(23)

where su and st, are the r and z components of the unit vector from the primary node to the connecting node

i, and N is the number of connecting nodes•

The derivatives are determined approximately using a least squares approach. The particle velocity

vector is then solved for using Equation 22, and the acoustic intensity vector is given by Equation 21. The
axisymmetric acoustic intensity field for a complete domain is found by repeating this procedure for each node

in the domain. In this way, a complete energy flow solution can be derived from nodal pressures and element
connectivities.

EXAMPLES

The axisymmetric model of a submerged, half prolate spheroidal shell is shown in Figure 2. The
structure has a semi axes of 10 m and 5 m. The material is steel with a uniform thickness of 25 mm, a Young's

modulus (E) of 2.074 Ell N/m 2 , a density (9) of 7860 kg/m 3 , a Poisson's ratio (v) of 0.3, and a material loss

factor of 0.0. The frequency range of interest was 100 to 500 Hz. The problem was analyzed for harmonic zero,

commonly referred to as the "breathing mode" of the domain, implying no variation in the solution field about
the z axis.

I Ca o1: ----.. "" sorb,ng, bounda 

__ Outer Fluid "x\x \Xxxx\_

0.0 FeiC°' _ axis of symmetry i
, _

10.0 25.0 z

Figure 2. Axisymmetric Model of a Submerged, Half Prolate-spheroid.
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As shown in the diagram, the structure is submerged in fluid, which was also modeled and interfaced

with the structure. The fluid is seawater, with a density (13) of 1025 kg/m 3and a speed of sound (c) of 1500 m/s.

Two sets of boundary conditions along the left, vertical fluid edge wcre applied, and are discussed in more detail
below.

A finite element (CONEAX) model of the problem is shown in Figure 3. Thc structure was modeled

using axisymmetric conical shell elements. The plate thickness, steel material properties, and the frcqucncy
range determine an estimated average flexurai wavelength [38] of 0.7 m at 500 Hz, which for a mesh requirement

of about eight elements/wavelength translates to a structural mesh density of 0.087 m/element length.

The outer fluid was modeled using TRIAAX elements. The seawater properties and frequency range

determine an upper wavelength of 15.0 m and a lower wavelength of 3.0 m. The upper wavelength determines
the location of the outer boundary of the fluid mesh, shown as _ in Figure 2, as one wavelength from the
structure, or 15.0 m. The lower wavelength determines the fluid mesh density, which for a minimum of 8

elements/wavelength, specifies a fluid mesh size of 0.375 m/element length. The fluid and structural meshes
are distinct at the fluid-structure boundary, but with coincident nodes. These coincident nodes are coupled by

area matrices which map fluid pressures to structural forces, as described earlier. Only one fluid DOF was
assigned to each mesh point.

The area matrices are input with DMIG cards, which apply area values to the damping, or B2PP matrix.
A current limitation of NASTRAN is the program performing nonsymmetric system matrix decompositions when

MPC data is used with DMIG input. Despite the DMIG input being declared symmetric, when the MPC

equations are used to obtain the BDD matrix, NASI]L4,N changes the matrix trailer to nonsymmetric. All matrix
operations become nonsymmetric as a result, greatly increasing computer time. A sequence of AEI'ER
statements may be used to restore the trailer to its symmetric form. One such sequence (for the 199(} version
of NASTRAN, Rigid Format 8) is shown below for BDI).

ALTER 1195
DIAGONAL BDD/AVEC/*COLUMN*/0.$

ADD AVEC,/PVEC/(0.0,0.0)$
MERGE BDD,,,,PVEC,/BDDSYM/-]//65

EQUIV BDDSYM,BDD$

Makc BDD trailer symmetric
Vector of ones

Vector of zeros (P-Vet)
l.)ummy merge
BI)I) now symmetric

This alter isinscrtcdbeforc the FRRI) module. With the BI)I) symmetry flag rcslt_rcd, sul_scqucnt m:tt_ix

operations will take advantage of the symmetry of the system, reducing the required computer time. "l'his
NASTRAN bug has been fixed by Gordon Chan of Unisys for the 1992 program release.

Since the structural elements are about one-quarter the size of the desired fluid elements, some mesh
transitioning in the fluid meshes was required from the mesh density of the structure (0.087 m/element length)
to the mesh density of the fluid (0.375 m/element length). The fluid element material properties were assigned

according to Eq. 19.

Boundary and Loading Conditions

Two sets of boundary conditions were applied in the problem. In both cases, a 0c impedance, or plane

wave absorbing boundary condition was applied to the curved outer fluid boundary; and a point forcing function
was applied at z=6.0 in the positive r direction along the structure, as shown in Figure 2. The structure was

constrained in all degrees of freedom at the upper left end. The left vcrtic_'d fluid boundary was modeled in two
ways: (1) as a rigid wall, which reflects incident waves, and (2) as a qc impedance absorber. I)MIG statements

inputting - A/pc values for all boundary points simulated the £_c plane wave absorber.

ResuLts

The problem may be accurately solved for any set of frequencies from 100 to 500 l lz. Detailed results
are presented here for the 100 Hz case for Cases 1 and 2. The numerical output is examined several ways: p<_wer
input and power radiation calculations, structural displacements, acoustic pressure contour plots, and acoustic

intensity vector plots. This set of output provides a nearly complete ._olution to the structural acoustic problem.
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Figure 3. Finite Element Mesh.

Since hc_tH materials arc lossless, all power entering the structure must eventually be radiated into the
fluid. This means the power input by the forcing function must equal the power exiting the system through the

plane-wave absorbing outer boundaries. Power input is defined as

P,. = l:,,,v:,,, (24)

where F,n is the radial complex input force (in this case unity), and vT, is the complex conjugate of the

corresponding volt,city at the force point. The power radiated through the absorbing boundary may be found

by integrating the calculated acoustic intensity field normal to the boundary:

!',.,_, :-: t i' _] dA, (25)

C

where C denotes thc b_undary contour, fi is the outward normal vector, and dA is the incremental area. This

integration may bc converted to a summation over all nodes on the boundary, where
21

P_._,, : .=_,')"]:r i, A,. (26)
i -, I

In this case, 6, and A, are calculated for each node on the boundary, and used with the intensity vector at each

node to calculate IHe power leaving the system. The summation over all boundary nodes gives the total radiated

l_ower.
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Radiated power is commonly represented by a spherical pressure field with a reference radius of one

yard. If the outer boundary is in the far-field, the pressure at one yard is

pty,,_(dB) = 20log _/_ + 120, (27)
¥ zTtr

where 120 dB is added to calculate the pressure relative to 1 rtPa.

Tablel lists the power quantities defined above, and the relative error calculated by subtracting the

radiated power from the input power and normalizing to the input power. The error, about 2% for each case,
is probably due to the curved outer boundary. The approximate boundary condition was of a plane-wave
absorbing boundary. Since neither the boundary nor the radiated waves is perfectly plane, small reflections at

the boundary can occur, causing the power balance to be slightly in error. The radiated power, and therefore
the pressure at 1 yard, is higher for Case 2, and the error is either due to the additional left pc boundary's

absorbing more power, or the boundary's causing a small shift in the frequency response of the system. A full
frequency sweep would be required to determine the effects of the left absorbing boundary.

Case

1

2

Power Input'(W) ' "' Power Radiated (W) %Error Pressure@l yard

(dB re: I _tPa)

1.499E-8 1.519E-8 -1.33 91.9

8.988E-8 8.798E-8 2.11 99.5

Tablel. Power Results for 100 Hz.

A plot of the displaced shapes of the structure for both cases is shown in Figure 4. The displacement
field of the structure is complex, and a time dependent animation of the structural response is required to

visualize fully the movement. The plots shown here are at a single phase angle in the displacement cycle (292.5 °),
and show that the change in boundary condition does not significantly alter the structural response. A small
phase shift has occurred, but the general shape is the same for both cases. The ring loading causes the

discontinuity in the waveform at z = 6.0. This point is the source of the waves travelling to the left and right from
the load.

Acoustic intensity vector plots are superimposed on acoustic pressure contour plots in Figures 5-8.

Figure 5 shows the entire field for Case 1, and Figure 6 is a close-up of the field near the structure. Figure 7
is a plot representing Case 2, and Figure 8 is a closer view. A common pressure scale is used for all plots, with

the letters on the contours corresponding to the pressure levels (dB re: 1 _tPa). The vector lengths are
proportional to the log of the intensity magnitudes. The log of intensity is used in the plots to overcome the I/r
decay in intensity magnitude with distance. Since this is an axkyymmetric analysis at circumferential harmonic
zero, the acoustic fields are constant for all angles about the z axis, and no net energy may pass through the lower
z boundary. All intensity vectors along the lower boundary therefore have zero radial components.

The plots for Case 1 (Figure 5 and Figure 6) show the highest levels of far-field pressures to be in the

r and z directions, with values between contours I and J, or 70 to 75 dB. Near-field pressure peaks are indicated
near the structure by D contours, or about 100 dB levels. Examining the far-field intensity vectors show a
far-field condition (all acoustic energy directed outward) at the outer boundary, with the dominant energy flow

paths in the r and z directions. The rigid boundary condition along the left wall is evidenced by the absence of
any outward z directed intensity component along it. The near-field intensity vectors shows an energy path that

begins at the load point (z--- 6.0) and branches to the right and left. At the right, or bottom of the structure, energy
flows along the fluid-structure boundary before travelling away toward the far-field at the r = 0 boundary. To
the left of the load point, energy re-enters and re-exits the structure twice before radiating outward at the z = 0

boundary. The circulation of power to the left of the load point causes "false sources" to appear where the energy
re-exits the structure. Examination of the entire intensity field identifies the load point as the original source

of power though.

For Case 2, the use of the pc boundary (Figure 7 and Figure 8) and at the left edge of the fluid causes

the acoustic pressures in the r direction, or upper left of the fluid domain, to decrease significantly from the rigid
boundary case, from 75 to 55 dB. The acoustic intensity field shows the reason for the decrease in pressure; the
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vectors along the pc boundary now have a z-directed component, implying power exiting the system through the

boundary. The overall radiated power is higher for Case 2, though, due to an increase in the radiated energy
along the midsection of the outer boundary. The near-field intensity plot reveals that the circulating power flows
between structure and fluid to the left of the load point have disappeared. The energy now flows along the

fl uid-structure boundary and radiates outward at the top of the structure. To the right of the load however, power
now circulates. The dominant path is from the load point to the right; into and out of the structure; then along
the structure until r = 0, where some power reenters the structure, and the rest radiates outward along the z axis.

NASTRAN DIFFICULTIES ENCOUNTERED

Two important limitations of NASTRAN became apparant during this study: the BDD damping matrix's

being specified as unsymmetric regardless of the symmetric nature of fluid structure interaction and absorbing
boundary data input by DMIG cards; and the formulation of stiffness coefficients for CONEAX elements. The

BDD matrix trailer may be restored to symmetric using the ALTER statements outlined in the Example section.
The difficulties with the CONEAX formulation are not easily fixed however.

Stiffnesses for CONEAX elements are computed analytically by NASTRAN, and involve the inverse

of Ar/AI, where Ar is the difference in radii and AI is the total distance between the grids defining an element.

For perfectly cylindrical shell elements with no variation in radii ( Ar/AI = 0), a different formulation is used

to avoid a floating point error caused by a division by zero. However, no provision is made for small relative

variation in radii (Ar/A1 = 0), and for a small range of elements the analytical computation is corrupted when

computer precision limits are reached. Sometimes the error is so drastic that negative values are obtained for

self term (diagonal) stfffnesses. The negative stiffnesses are reported to the user when NASTRAN checks the
system matrices for singularities. However, sometimes the error may be drastic in the positive sense, i.e.,
stiffnesses orders of magnitude too large. No error would be reported to the user, and the final solution would
be incorrect.

CONEAX stiffness errors were encountered for the example described here at the upper left end of
the structure, where the elements become nearly cylindrical. In this case, the stiffnesscs of several of the near
cylindrical elements were output and analyzed for accuracy. The two end elcmcnts were found to have large

errors in stiffness. To solve the problem, the radii of the element grid points were sct equal, and the end of the
structure was approximated as purely cylindrical.

A possible programming solution to the sensitivity of CONEAX stiffnesses to small relative differences

in radii is to approximate nearly cylindrical regions as cylindrical. For example, if for a given element Ar/Al

is below some specified tolerance e, the second grid radius is set equal to the first grid radius. The resulting model
would be a stepwise approximation of the nearly cylindrical region. The chief problem is how to choose e. Studies

would have to be performed on ranges of nearly cylindrical elements using differcnt levels of computer precision
to determine the accuracy limits on the analytical stiffness computation method.

CONCLUSIONS

The combination of structural displacement plots, pressure contours, and acoustic intensity vector fields
all serve to reveal the complete state of a structural-acoustic problem. However, one component of the response
is missing: the energy flow within the structure. The circulating energy along the structural-acoustic boundary

indicated by the intensity plots show power flowing through the structure. A formulation similar to that for
acoustic intensity can be performed for the structure; however more than one wave type must be considered.

For the axisymmetric shells of revolution (CONEAX) used here, for example, both flexural (composed of both
shear and moment waves) and longitudinal waveforms may transport energy through structures. Methods have
been developed for general three-dimensional structural models of beams (BAR) and plates (QUAD4) [39], but

have not yet been extended to axisymmetric problems. This additional analysis tool will help improve
considerably the understanding of structural-acoustic, frequency response problems.
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Figure7. AcousticIntensities and Pressures for Absorbing Vertical Boundary;
Lines Denote Constant Pressure Contours; Vectors Denote Acoustic Intensities.
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